Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.489
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2316819121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657042

RESUMO

Posttranslational modifications regulate the properties and abundance of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate fast excitatory synaptic transmission and synaptic plasticity in the central nervous system. During long-term depression (LTD), protein tyrosine phosphatases (PTPs) dephosphorylate tyrosine residues in the C-terminal tail of AMPA receptor GluA2 subunit, which is essential for GluA2 endocytosis and group I metabotropic glutamate receptor (mGluR)-dependent LTD. However, as a selective downstream effector of mGluRs, the mGluR-dependent PTP responsible for GluA2 tyrosine dephosphorylation remains elusive at Schaffer collateral (SC)-CA1 synapses. In the present study, we find that mGluR5 stimulation activates Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) by increasing phospho-Y542 levels in SHP2. Under steady-state conditions, SHP2 plays a protective role in stabilizing phospho-Y869 of GluA2 by directly interacting with GluA2 phosphorylated at Y869, without affecting GluA2 phospho-Y876 levels. Upon mGluR5 stimulation, SHP2 dephosphorylates GluA2 at Y869 and Y876, resulting in GluA2 endocytosis and mGluR-LTD. Our results establish SHP2 as a downstream effector of mGluR5 and indicate a dual action of SHP2 in regulating GluA2 tyrosine phosphorylation and function. Given the implications of mGluR5 and SHP2 in synaptic pathophysiology, we propose SHP2 as a promising therapeutic target for neurodevelopmental and autism spectrum disorders.


Assuntos
Endocitose , Depressão Sináptica de Longo Prazo , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Receptores de AMPA , Receptores de Glutamato Metabotrópico , Receptores de AMPA/metabolismo , Animais , Fosforilação , Endocitose/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Ratos , Tirosina/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Sinapses/metabolismo , Camundongos , Humanos , Neurônios/metabolismo
2.
Sci Rep ; 14(1): 8558, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609494

RESUMO

Glutamate (Glu) is important for memory and learning. Hence, Glu imbalance is speculated to affect autism spectrum disorder (ASD) pathophysiology. The action of Glu is mediated through receptors and we analyzed four metabotropic Glu receptors (mGluR/GRM) in Indo-Caucasoid families with ASD probands and controls. The trait scores of the ASD probands were assessed using the Childhood Autism Rating Scale2-ST. Peripheral blood was collected, genomic DNA isolated, and GRM5 rs905646, GRM6 rs762724 & rs2067011, and GRM7 rs3792452 were analyzed by PCR/RFLP or Taqman assay. Expression of mGluRs was measured in the peripheral blood by qPCR. Significantly higher frequencies of rs2067011 'A' allele/ AA' genotype were detected in the probands. rs905646 'A 'exhibited significantly higher parental transmission. Genetic variants showed independent as well as interactive effects in the probands. Receptor expression was down-regulated in the probands, especially in the presence of rs905646 'AA', rs762724 'TT', rs2067011 'GG', and rs3792452 'CC'. Trait scores were higher in the presence of rs762724 'T' and rs2067011 'G'. Therefore, in the presence of risk genetic variants, down-regulated mGluR expression may increase autistic trait scores. Since our investigation was confined to the peripheral system, in-depth exploration involving peripheral as well as central nervous systems may validate our observation.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Receptores de Glutamato Metabotrópico , Humanos , Criança , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Expressão Gênica , Ácido Glutâmico , Receptores de Glutamato Metabotrópico/genética
3.
J Clin Invest ; 134(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426491

RESUMO

Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and the single-gene cause of autism, is caused by decreased expression of the fragile X messenger ribonucleoprotein protein (FMRP), a ribosomal-associated RNA-binding protein involved in translational repression. Extensive preclinical work in several FXS animal models supported the therapeutic potential of decreasing metabotropic glutamate receptor (mGluR) signaling to correct translation of proteins related to synaptic plasticity; however, multiple clinical trials failed to show conclusive evidence of efficacy. In this issue of the JCI, Berry-Kravis and colleagues conducted the FXLEARN clinical trial to address experimental design concerns from previous trials. Unfortunately, despite treatment of young children with combined pharmacological and learning interventions for a prolonged period, no efficacy of blocking mGluR activity was observed. Future systematic evaluation of potential therapeutic approaches should evaluate consistency between human and animal pathophysiological mechanisms, utilize innovative clinical trial design from FXLEARN, and incorporate translatable biomarkers.


Assuntos
Síndrome do Cromossomo X Frágil , Deficiência Intelectual , Receptores de Glutamato Metabotrópico , Animais , Criança , Humanos , Pré-Escolar , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Proteína do X Frágil de Retardo Mental/uso terapêutico , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Plasticidade Neuronal
4.
J Parkinsons Dis ; 14(2): 245-259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427500

RESUMO

Background: Increased activity across corticostriatal glutamatergic synapses may contribute to L-DOPA-induced dyskinesia in Parkinson's disease. Given the weak efficacy and side-effect profile of amantadine, alternative strategies to reduce glutamate transmission are being investigated. Metabotropic glutamate receptor 4 (mGlu4) is a promising target since its activation would reduce glutamate release. Objective: We hypothesized that two mGlu4 positive allosteric modulators, Lu AF21934 ((1 S,2 R)-N1-(3,4-dichlorophenyl)cyclohexane-1,2-dicarboxamide) and ADX88178 (5-Methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine), would provide relief in rat and primate models of L-DOPA-induced dyskinesia. Methods: The ability of Lu AF21934 or ADX88178 to reverse pre-established dyskinesia was examined in L-DOPA-primed 6-hydroxydopamine-lesioned rats expressing abnormal involuntary movements (AIMs) or in 1-methyl-4-phenyl,1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets expressing L-DOPA-induced dyskinesia. Additionally, the ability of Lu AF21934 to prevent the development of de novo L-DOPA-induced AIMs was explored in the 6-hydroxydopamine-lesioned rats. Results: Neither Lu AF21934 (10 or 30 mg/kg p.o.) nor ADX88178 (10 or 30 mg/kg p.o.) reduced pre-established AIMs in 6-hydroxydopamine-lesioned rats. Similarly, in L-DOPA-primed common marmosets, no reduction in established dyskinesia was observed with Lu AF21934 (3 or 10 mg/kg p.o.). Conversely, amantadine significantly reduced (>40%) the expression of dyskinesia in both models. Lu AF21934 also failed to suppress the development of AIMs in 6-hydroxydopamine-lesioned rats. Conclusions: This study found no benefit of mGlu4 positive allosteric modulators in tackling L-DOPA-induced dyskinesia. These findings are concordant with the recent failure of foliglurax in phase II clinical trials supporting the predictive validity of these pre-clinical dyskinesia models, while raising further doubt on the anti-dyskinetic potential of mGlu4 positive allosteric modulators.


Assuntos
Anilidas , Ácidos Cicloexanocarboxílicos , Discinesia Induzida por Medicamentos , Doença de Parkinson , Pirimidinas , Receptores de Glutamato Metabotrópico , Tiazóis , Ratos , Animais , Levodopa/uso terapêutico , Callithrix , Doença de Parkinson/tratamento farmacológico , Oxidopamina , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/metabolismo , Antiparkinsonianos/uso terapêutico , Amantadina/farmacologia , Amantadina/uso terapêutico , Glutamatos/uso terapêutico , Modelos Animais de Doenças
5.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391904

RESUMO

Acting as GTPase activating proteins promoting the silencing of activated G-proteins, regulators of G protein signaling (RGSs) are generally considered negative modulators of cell signaling. In the CNS, the expression of RGS4 is altered in diverse pathologies and its upregulation was reported in astrocytes exposed to an inflammatory environment. In a model of cultured cortical astrocytes, we herein investigate the influence of RGS4 on intracellular calcium signaling mediated by type 5 metabotropic glutamate receptor (mGluR5), which is known to support the bidirectional communication between neurons and glial cells. RGS4 activity was manipulated by exposure to the inhibitor CCG 63802 or by infecting the cells with lentiviruses designed to achieve the silencing or overexpression of RGS4. The pharmacological inhibition or silencing of RGS4 resulted in a decrease in the percentage of cells responding to the mGluR5 agonist DHPG and in the proportion of cells showing typical calcium oscillations. Conversely, RGS4-lentivirus infection increased the percentage of cells showing calcium oscillations. While the physiological implication of cytosolic calcium oscillations in astrocytes is still under investigation, the fine-tuning of calcium signaling likely determines the coding of diverse biological events. Indirect signaling modulators such as RGS4 inhibitors, used in combination with receptor ligands, could pave the way for new therapeutic approaches for diverse neurological disorders with improved efficacy and selectivity.


Assuntos
Proteínas RGS , Receptores de Glutamato Metabotrópico , Ratos , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Cálcio/metabolismo , Astrócitos/metabolismo , Ratos Sprague-Dawley , Proteínas RGS/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Sinalização do Cálcio
6.
EMBO Mol Med ; 16(3): 506-522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374465

RESUMO

Fragile X syndrome (FXS) is the leading cause of inherited autism and intellectual disabilities. Aberrant protein synthesis due to the loss of fragile X messenger ribonucleoprotein (FMRP) is the major defect in FXS, leading to a plethora of cellular and behavioral abnormalities. However, no treatments are available to date. In this study, we found that activation of metabotropic glutamate receptor 7 (mGluR7) using a positive allosteric modulator named AMN082 represses protein synthesis through ERK1/2 and eIF4E signaling in an FMRP-independent manner. We further demonstrated that treatment of AMN082 leads to a reduction in neuronal excitability, which in turn ameliorates audiogenic seizure susceptibility in Fmr1 KO mice, the FXS mouse model. When evaluating the animals' behavior, we showed that treatment of AMN082 reduces repetitive behavior and improves learning and memory in Fmr1 KO mice. This study uncovers novel functions of mGluR7 and AMN082 and suggests the activation of mGluR7 as a potential therapeutic approach for treating FXS.


Assuntos
Compostos Benzidrílicos , Síndrome do Cromossomo X Frágil , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Receptores de Glutamato Metabotrópico/metabolismo , Modelos Animais de Doenças , Camundongos Knockout
7.
Neurosci Lett ; 823: 137664, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38309326

RESUMO

Calcium mobilization from the endoplasmic reticulum (ER) induced by, for example, IP3 receptor (IP3R) stimulation, and its subsequent crosstalk with extracellular Ca2+ influx mediated through voltage-gated calcium channels (VGCCs) and neuronal store-operated calcium entry (nSOCE), is essential for normal neuronal signaling and cellular homeostasis. However, several studies suggest that chronic calcium dysregulation may play a key role in the onset and/or progression of neurodegenerative conditions, particularly Alzheimer's disease (AD). Here, using early postnatal hippocampal tissue from two transgenic murine models of AD, we provide further evidence that not only are crucial calcium signaling pathways dysregulated, but also that such dysregulation occurs at very early stages of development. Utilizing epifluorescence calcium imaging, we investigated ER-, nSOCE- and VGCC-mediated calcium signaling in cultured primary hippocampal neurons from two transgenic rodent models of AD: 3xTg-AD mice (PS1M146V/APPSWE/TauP301L) and TgF344-AD rats (APPSWE/PS1ΔE9) between 2 and 9 days old. Our results reveal that, in comparison to control hippocampal neurons, those from 3xTg-AD mice possessed significantly greater basal ER calcium levels, as measured by larger responses to I-mGluR-mediated ER Ca2+ mobilization (amplitude; 4 (0-19) vs 21(12-36) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = 14 a.u. (11-18); p = 0.004)) but reduced nSOCE (15 (4-22) vs 8(5-11) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = -7 a.u. (-3- -10 a.u.); p < 0.0001). Furthermore, unlike non-Tg neurons, where depolarization enhanced the amplitude, duration and area under the curve (A.U.C.) of I-mGluR-evoked ER-mediated calcium signals when compared with basal conditions, this was not apparent in 3xTg-AD neurons. Whilst the amplitude of depolarization-enhanced I-mGluR-evoked ER-mediated calcium signals from both non-Tg F344 and TgF344-AD neurons was significantly enhanced relative to basal conditions, the A.U.C. and duration of responses were enhanced significantly upon depolarization in non-Tg F344, but not in TgF344-AD, neurons. Overall, the nature of basal I-mGluR-mediated calcium responses did not differ significantly between non-Tg F344 and TgF344-AD neurons. In summary, our results characterizing ER- and nSOCE-mediated calcium signaling in neurons demonstrate that ER Ca2+ dyshomeostasis is an early and potentially pathogenic event in familial AD.


Assuntos
Doença de Alzheimer , Receptores de Glutamato Metabotrópico , Camundongos , Ratos , Animais , Doença de Alzheimer/metabolismo , Roedores/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Cálcio/metabolismo , Ratos Endogâmicos F344 , Neurônios/metabolismo , Retículo Endoplasmático/metabolismo , Sinalização do Cálcio/fisiologia
8.
Mol Pharmacol ; 105(5): 348-358, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38423750

RESUMO

Metabotropic glutamate receptor 7 (mGlu7) is the most highly conserved and abundantly expressed mGlu receptor in the human brain. The presynaptic localization of mGlu7, coupled with its low affinity for its endogenous agonist, glutamate, are features that contribute to the receptor's role in modulating neuronal excitation and inhibition patterns, including long-term potentiation, in various brain regions. These characteristics suggest that mGlu7 modulation may serve as a novel therapeutic strategy in disorders of cognitive dysfunction, including neurodevelopmental disorders that cause impairments in learning, memory, and attention. Primary mutations in the GRM7 gene have recently been identified as novel causes of neurodevelopmental disorders, and these patients exhibit profound intellectual and cognitive disability. Pharmacological tools, such as agonists, antagonists, and allosteric modulators, have been the mainstay for targeting mGlu7 in its endogenous homodimeric form to probe effects of its function and modulation in disease models. However, recent research has identified diversity in dimerization, as well as trans-synaptic interacting proteins, that also play a role in mGlu7 signaling and pharmacological properties. These novel findings represent exciting opportunities in the field of mGlu receptor drug discovery and highlight the importance of further understanding the functions of mGlu7 in complex neurologic conditions at both the molecular and physiologic levels. SIGNIFICANCE STATEMENT: Proper expression and function of mGlu7 is essential for learning, attention, and memory formation at the molecular level within neural circuits. The pharmacological targeting of mGlu7 is undergoing a paradigm shift by incorporating an understanding of receptor interaction with other cis- and trans- acting synaptic proteins, as well as various intracellular signaling pathways. Based upon these new findings, mGlu7's potential as a drug target in the treatment of cognitive disorders and learning impairments is primed for exploration.


Assuntos
Disfunção Cognitiva , Receptores de Glutamato Metabotrópico , Humanos , Potenciação de Longa Duração , Transdução de Sinais , Receptores de Glutamato Metabotrópico/metabolismo
9.
Transl Psychiatry ; 14(1): 113, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396013

RESUMO

Antipsychotic-induced low availability of group II metabotropic glutamate receptors (including mGlu2R and mGlu3R) in brains of schizophrenia patients may explain the limited efficacy of mGlu2/3R ligands in clinical trials. Studies evaluating mGlu2/3R levels in well-designed, large postmortem brain cohorts are needed to address this issue. Postmortem samples from the dorsolateral prefrontal cortex of 96 schizophrenia subjects and matched controls were collected. Toxicological analyses identified cases who were (AP+) or were not (AP-) receiving antipsychotic treatment near the time of death. Protein and mRNA levels of mGlu2R and mGlu3R, as well as GRM2 and GRM3 promoter-attached histone posttranslational modifications, were quantified. Experimental animal models were used to compare with data obtained in human tissues. Compared to matched controls, schizophrenia cortical samples had lower mGlu2R protein amounts, regardless of antipsychotic medication. Downregulation of mGlu3R was observed in AP- schizophrenia subjects only. Greater predicted occupancy values of dopamine D2 and serotonin 5HT2A receptors correlated with higher density of mGlu3R, but not mGlu2R. Clozapine treatment and maternal immune activation in rodents mimicked the mGlu2R, but not mGlu3R regulation observed in schizophrenia brains. mGlu2R and mGlu3R mRNA levels, and the epigenetic control mechanisms did not parallel the alterations at the protein level, and in some groups correlated inversely. Insufficient cortical availability of mGlu2R and mGlu3R may be associated with schizophrenia. Antipsychotic treatment may normalize mGlu3R, but not mGlu2R protein levels. A model in which epigenetic feedback mechanisms controlling mGlu3R expression are activated to counterbalance mGluR loss of function is described.


Assuntos
Antipsicóticos , Receptores de Glutamato Metabotrópico , Esquizofrenia , Animais , Humanos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Receptores de Glutamato Metabotrópico/genética , Encéfalo/metabolismo , Epigênese Genética , RNA Mensageiro/metabolismo
10.
Nat Commun ; 15(1): 1819, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418467

RESUMO

Dendritic mechanisms driving input-output transformation in starburst amacrine cells (SACs) are not fully understood. Here, we combine two-photon subcellular voltage and calcium imaging and electrophysiological recording to determine the computational architecture of mouse SAC dendrites. We found that the perisomatic region integrates motion signals over the entire dendritic field, providing a low-pass-filtered global depolarization to dendrites. Dendrites integrate local synaptic inputs with this global signal in a direction-selective manner. Coincidental local synaptic inputs and the global motion signal in the outward motion direction generate local suprathreshold calcium transients. Moreover, metabotropic glutamate receptor 2 (mGluR2) signaling in SACs modulates the initiation of calcium transients in dendrites but not at the soma. In contrast, voltage-gated potassium channel 3 (Kv3) dampens fast voltage transients at the soma. Together, complementary mGluR2 and Kv3 signaling in different subcellular regions leads to dendritic compartmentalization and direction selectivity, highlighting the importance of these mechanisms in dendritic computation.


Assuntos
Células Amácrinas , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Células Amácrinas/fisiologia , Cálcio , Transdução de Sinais , Dendritos/fisiologia
11.
J Integr Neurosci ; 23(2): 26, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38419440

RESUMO

BACKGROUND: Microglia-mediated neuroinflammation is a hallmark of neurodegeneration. Metabotropic glutamate receptor 8 (GRM8) has been reported to promote neuronal survival in neurodegenerative diseases, yet the effect of GRM8 on neuroinflammation is still unclear. Calcium overload-induced endoplasmic reticulum (ER)-mitochondrial miscommunication has been reported to trigger neuroinflammation in the brain. The aim of this study was to investigate putative anti-inflammatory effects of GRM8 in microglia, specifically focusing on its role in calcium overload-induced ER stress and mitochondrial dysfunction. METHODS: BV2 microglial cells were pretreated with GRM8 agonist prior to lipopolysaccharide administration. Pro-inflammatory cytokine levels and the microglial polarization state in BV2 cells were then quantified. Cellular apoptosis and the viability of neuron-like PC12 cells co-cultured with BV2 cells were examined using flow cytometry and a Cell Counting Kit-8, respectively. The concentration of cAMP, inositol-1,4,5-triphosphate receptor (IP3R)-dependent calcium release, ER Ca2+ concentration, mitochondrial function as reflected by reactive oxygen species levels, ATP production, mitochondrial membrane potential, expression of ER stress-sensing protein, and phosphorylation of the nuclear factor kappa B (NF-κB) p65 subunit were also quantified in BV2 cells. RESULTS: GRM8 activation inhibited pro-inflammatory cytokine release and shifted microglia polarization towards an anti-inflammatory-like phenotype in BV2 cells, as well as promoting neuron-like PC12 cell survival when co-cultured with BV2 cells. Mechanistically, microglial GRM8 activation significantly inhibited cAMP production, thereby desensitizing the IP3R located within the ER. This process markedly limited IP3R-dependent calcium release, thus restoring mitochondrial function while inhibiting ER stress and subsequently deactivating NF-κB signaling. CONCLUSIONS: Our results indicate that GRM8 activation can protect against microglia-mediated neuroinflammation by attenuating ER stress and mitochondrial dysfunction, and that IP3R-mediated calcium signaling may play a vital role in this process. GRM8 may thus be a potential target for limiting neuroinflammation.


Assuntos
Microglia , Doenças Mitocondriais , Receptores de Glutamato Metabotrópico , Ratos , Animais , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Cálcio/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Estresse do Retículo Endoplasmático , Doenças Mitocondriais/metabolismo
12.
Dev Cell ; 59(5): 579-594.e6, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38309264

RESUMO

There are limited methods to stably analyze the interactions between cancer cells and glial cells in vitro, which hinders our molecular understanding. Here, we develop a simple and stable culture method of mouse glial cells, termed mixed-glial culture on/in soft substrate (MGS), which serves well as a platform to study cancer-glia interactions. Using this method, we find that human lung cancer cells become overly dependent on metabotropic glutamate receptor 1 (mGluR1) signaling in the brain microenvironment. Mechanistically, interactions with astrocytes induce mGluR1 in cancer cells through the Wnt-5a/prickle planar cell polarity protein 1 (PRICKLE1)/RE1 silencing transcription factor (REST) axis. Induced mGluR1 directly interacts with and stabilizes the epidermal growth factor receptor (EGFR) in a glutamate-dependent manner, and these cells then become responsive to mGluR1 inhibition. Our results highlight increased dependence on mGluR1 signaling as an adaptive strategy and vulnerability of human lung cancer brain metastasis.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Humanos , Ácido Glutâmico , Astrócitos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores ErbB , Microambiente Tumoral
13.
Acta Cytol ; 68(1): 66-72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38281480

RESUMO

INTRODUCTION: Chondromyxoid fibroma (CMF) is a rare, benign bone tumor that occurs predominantly in the second and third decades of life, more frequently in males. Overexpression of GRM1 as a consequence of tumor-specific gene rearrangement of GRM1 has recently been reported as a useful immunohistochemical marker for histopathological diagnosis of CMF. However, the usefulness of GRM1 staining of cytology specimens has not yet been evaluated. In this report, the cytological findings and GRM1 immunocytochemistry of two cases of CMF are described. CASE PRESENTATIONS: Case 1 was a 15-year-old girl with a rib tumor. Imaging findings suggested a benign neurogenic tumor such as schwannoma. The tumor had increased in size over a 2-year period and was resected. Case 2 was a 14-year-old boy with a metatarsal tumor involving his left first toe. Imaging findings were suspicious of a benign neoplastic lesion. Biopsy findings suggested a benign tumor, and the patient underwent tumor resection. Cytologically, in both cases the tumor cells were predominantly spindle-shaped or stellate, with a myxoid to chondromyxoid background matrix and multinucleated giant cells, and these matrices were metachromatic with Giemsa staining. Cellular atypia was more accentuated in case 2 than in case 1. Immunocytochemical staining for GRM1 was positive in both cases. CONCLUSION: Due to the overlap in cytological findings, it is often difficult to differentiate CMF from chondroblastoma and chondrosarcoma grade 2. Immunocytochemical staining for GRM1 may support the diagnosis of CMF, and the reuse of Papanicolaou-stained specimens is applicable. The present cases further demonstrated the difficulty of differentiating CMF from other mimicking tumors such as chondroblastoma and chondrosarcoma grade 2. In such instances, immunocytochemistry for GRM1 is applicable to the diagnostic process, the value of which is strengthened by reusing Papanicolaou-stained specimens.


Assuntos
Neoplasias Ósseas , Condroblastoma , Condrossarcoma , Fibroma , Adolescente , Feminino , Humanos , Masculino , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/cirurgia , Neoplasias Ósseas/patologia , Condroblastoma/diagnóstico , Condroblastoma/cirurgia , Condroblastoma/metabolismo , Condrossarcoma/patologia , Citologia , Fibroma/diagnóstico , Fibroma/cirurgia , Fibroma/patologia , Receptores de Glutamato Metabotrópico/imunologia , Receptores de Glutamato Metabotrópico/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-38296154

RESUMO

Current treatment for schizophrenia (SZ) ameliorates the positive symptoms, but is inefficient in treating the negative and cognitive symptoms. The SZ glutamatergic dysfunction hypothesis has opened new avenues in the development of novel drugs targeting the glutamate storm, an inducer of progressive neuropathological changes. Positive allosteric modulators of metabotropic glutamate receptor 2 (mGluR2), such as JNJ-46356479 (JNJ), reduce the presynaptic release of glutamate, which has previously been demonstrated to attenuate glutamate- and dopamine-induced apoptosis in human neuroblastoma cell cultures. We hypothesised that JNJ treatment would modify the brain levels of apoptotic proteins in a mouse model of ketamine (KET)-induced schizophrenia. We analysed the levels of proapoptotic (caspase-3 and Bax) and antiapoptotic (Bcl-2) proteins by western blot in the prefrontal cortex and hippocampus of JNJ-treated mice. JNJ attenuated apoptosis in the brain by partially restoring the levels of the antiapoptotic Bcl-2 protein, which is significantly reduced in animals exposed to KET. Additionally, a significant inverse correlation was observed between proapoptotic protein levels and behavioural deficits in the mice. Our findings suggest that JNJ may attenuate brain apoptosis in vivo, as previously described in cell cultures, providing a link between neuropathological deficits and SZ symptomatology.


Assuntos
Ketamina , Receptores de Glutamato Metabotrópico , Esquizofrenia , Humanos , Camundongos , Animais , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Encéfalo/metabolismo , Ketamina/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Glutamatos/metabolismo
15.
J Med Chem ; 67(2): 1314-1326, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38170918

RESUMO

Metabotropic glutamate (Glu) receptors (mGlu receptors) play a key role in modulating excitatory neurotransmission in the central nervous system (CNS). In this study, we report the structure-based design and pharmacological evaluation of densely functionalized, conformationally restricted glutamate analogue (1S,2S,3S)-2-((S)-amino(carboxy)methyl)-3-(carboxymethyl)cyclopropane-1-carboxylic acid (LBG30300). LBG30300 was synthesized in a stereocontrolled fashion in nine steps from a commercially available optically active epoxide. Functional characterization of all eight mGlu receptor subtypes showed that LBG30300 is a picomolar agonist at mGlu2 with excellent selectivity over mGlu3 and the other six mGlu receptor subtypes. Bioavailability studies on mice (IV administration) confirm CNS exposure, and an in silico study predicts a binding mode of LBG30300 which induces a flipping of Tyr144 to allow for a salt bridge interaction of the acetate group with Arg271. The Tyr144 residue now prevents Arg271 from interacting with Asp146, which is a residue of differentiation between mGlu2 and mGlu3 and thus could explain the observed subtype selectivity.


Assuntos
Sistema Nervoso Central , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Sistema Nervoso Central/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Ciclopropanos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Glutamatos , Ácidos Carboxílicos
16.
Eur J Med Chem ; 266: 116157, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38245976

RESUMO

The metabotropic glutamate (Glu) receptors (mGluRs) are G-protein coupled receptors, which play a central role in modulating excitatory neurotransmission in the central nervous system (CNS). Thus, the development of tool compounds thereto, continues to interest the scientific community. In this study, we report the design and synthesis of new conformationally restricted 2-aminoadipic acid (2AA) 2-4, and glutamic acid 5, 6 analogs, which share the cyclopropane ring as the restrictor. The analogs were characterized at rat mGlu1-8 in an IP-One functional assay. While the 2AA analogs 3a, 4a and CCG-I analog 5a were shown to be selective mGlu2 agonists with low micromolar potencies, CCG-II analog 5b was shown to be a potent full agonist at mGlu2 (EC50 = 82 nM) with ∼15-fold selectivity over mGlu3, >25-fold selectivity over group III, and >60-fold selectivity over group I subtypes. An in silico study was performed to address this significant change (>3500 fold) in potency upon introduction of this methyl group (L-CCG-II vs 5b).


Assuntos
Aminoácidos , Receptores de Glutamato Metabotrópico , Ratos , Animais , Aminoácidos/farmacologia , Glicina , Receptores de Glutamato Metabotrópico/agonistas , Ácido Glutâmico/farmacologia , Sistema Nervoso Central
17.
Neurochem Res ; 49(3): 636-648, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37989895

RESUMO

Hallucinogenic 5-HT2A receptor (5-HT2AR) agonists-induced head-twitch response (HTR) is regulated by Gs signaling pathway. Formation of heterodimers between 5-HT2AR and metabotropic glutamate mGlu2 receptor (mGluR2) is essential for the hallucinogenic 5-HT2AR agonist-induced HTR. In order to investigate the effects of mGluR2 agonists and inverse agonists on hallucinogenic 5-HT2AR agonists DOM-induced HTR, C57BL/6 mice were pretreated with mGluR2 agonists (LY379268, LY354740, LY404039) or the inverse agonist LY341495, and the HTR was manually counted after administering DOM immediately. IP-One (IP1) HTRF assay and cAMP assay were performed to evaluate the effect of LY341495 or LY354740 on DOM-induced Gq and Gs activation in Human Embryonic Kidney-293 (HEK-293) T-type cells co-expressing 5-HT2AR and mGluR2. The results showed that DOM-induced HTR in mice was dose-dependently inhibited by LY379268, LY354740, and LY404039, while it was dose-dependently enhanced by LY341495. Moreover, LY341495 reversed the inhibitory effect of LY354740 on DOM-induced HTR. In HEK-293T cells co-expressing 5-HT2AR and mGluR2, DOM-induced cAMP level was decreased by LY354740 and increased by LY341495, but DOM-induced IP1 level was not regulated by LY354740 or LY341495. The regulation of DOM-induced HTR by mGluR2 agonists and inverse agonists is closely related to 5-HT2AR-mediated Gs signaling pathway. In HEK-293T cells co-expressing 5-HT2AR and mGluR2 A677S/A681P/A685G mutant (mGluR2 3 A mutant), DOM-induced cAMP level was not regulated by LY354740, but was significantly enhanced by LY341495. The 5-HT2AR/mGluR2 heterodimers is critical for DOM-induced HTR and cAMP level, both of which are inhibited by mGluR2 agonists and enhanced by mGluR2 inverse agonists.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Compostos Bicíclicos com Pontes , Óxidos S-Cíclicos , Agonismo Inverso de Drogas , Receptores de Glutamato Metabotrópico , Serotonina , Camundongos , Humanos , Animais , Células HEK293 , Camundongos Endogâmicos C57BL , Transdução de Sinais
18.
J Neurotrauma ; 41(5-6): 714-733, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37917117

RESUMO

Many military veterans who experienced blast-related traumatic brain injuries in the conflicts in Iraq and Afghanistan currently suffer from chronic cognitive and mental health problems that include depression and post-traumatic stress disorder (PTSD). Male rats exposed to repetitive low-level blast develop cognitive and PTSD-related behavioral traits that are present for more than 1 year after exposure. We previously reported that a group II metabotropic receptor (mGluR2/3) antagonist reversed blast-induced behavioral traits. In this report, we explored mGluR2/3 expression following blast exposure in male rats. Western blotting revealed that mGluR2 protein (but not mGluR3) was increased in all brain regions studied (anterior cortex, hippocampus, and amygdala) at 43 or 52 weeks after blast exposure but not at 2 weeks or 6 weeks. mGluR2 RNA was elevated at 52 weeks while mGluR3 was not. Immunohistochemical staining revealed no changes in the principally presynaptic localization of mGluR2 by blast exposure. Administering the mGluR2/3 antagonist LY341495 after behavioral traits had emerged rapidly reversed blast-induced effects on novel object recognition and cued fear responses 10 months following blast exposure. These studies support alterations in mGluR2 receptors as a key pathophysiological event following blast exposure and provide further support for group II metabotropic receptors as therapeutic targets in the neurobehavioral effects that follow blast injury.


Assuntos
Traumatismos por Explosões , Receptores de Glutamato Metabotrópico , Transtornos de Estresse Pós-Traumáticos , Masculino , Animais , Ratos , Ansiedade , Traumatismos por Explosões/complicações , Tonsila do Cerebelo
19.
CNS Neurosci Ther ; 30(2): e14419, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37622292

RESUMO

AIMS: To investigate the role of mGluR1α in cerebellar unipolar brush cells (UBC) in mediating vestibular compensation (VC), using mGluR1α agonist and antagonist to modulate ON UBC neurons, and explore the mGluR1/IP3/extracellular signal-regulated kinase (ERK) signaling pathway. METHODS: First, AAV virus that knockdown ON UBC (mGluR1α) were injected into cerebellar UBC by stereotactic, and verified by immunofluorescence and western blot. The effect on VC was evaluated after unilateral labyrinthectomy (UL). Second, saline, (RS)-3,5-dihydroxyphenylglycine (DHPG), and LY367385 were injected into tubes implanted in rats at different time points after UL separately. The effect on ON UBC neuron activity was evaluated by immunofluorescence. Then, Phosphoinositide (PI) and p-ERK1/2 levels of mGluR1α were analyzed by ELISA after UL. The protein levels of p-ERK and total ERK were verified by western blot. In addition, the effect of mGluR1α activation or inhibition on VC-related behavior was observed. RESULTS: mGluR1α knockdown induced VC phenotypes. DHPG increased ON UBC activity, while LY367385 reduced ON UBC activity. DHPG group showed an increase in PI and p-ERK1/2 levels, while LY367385 group showed a decrease in PI and p-ERK1/2 levels in cerebellar UBC of rats. The western blot results of p-ERK and total ERK confirm and support the observations. DHPG alleviated VC-related behavior phenotypes, while LY367385 exacerbated vestibular decompensation-like behavior induced by UL. CONCLUSION: mGluR1α activity in cerebellar ON UBC is crucial for mediating VC through the mGluR1/IP3/ERK signaling pathway, which affects ON UBC neuron activity and contributes to the pathogenesis of VC.


Assuntos
Benzoatos , MAP Quinases Reguladas por Sinal Extracelular , Glicina/análogos & derivados , Metoxi-Hidroxifenilglicol/análogos & derivados , Receptores de Glutamato Metabotrópico , Transdução de Sinais , Ratos , Animais
20.
Exp Physiol ; 109(1): 81-99, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656490

RESUMO

A metabotropic glutamate receptor coupled to phospholipase D (PLD-mGluR) was discovered in the hippocampus over three decades ago. Its pharmacology and direct linkage to PLD activation are well established and indicate it is a highly atypical glutamate receptor. A receptor with the same pharmacology is present in spindle primary sensory terminals where its blockade can totally abolish, and its activation can double, the normal stretch-evoked firing. We report here the first identification of this PLD-mGluR protein, by capitalizing on its expression in primary mechanosensory terminals, developing an enriched source, pharmacological profiling to identify an optimal ligand, and then functionalizing it as a molecular tool. Evidence from immunofluorescence, western and far-western blotting indicates PLD-mGluR is homomeric GluK2, since GluK2 is the only glutamate receptor protein/receptor subunit present in spindle mechanosensory terminals. Its expression was also found in the lanceolate palisade ending of hair follicle, also known to contain the PLD-mGluR. Finally, in a mouse model with ionotropic function ablated in the GluK2 subunit, spindle glutamatergic responses were still present, confirming it acts purely metabotropically. We conclude the PLD-mGluR is a homomeric GluK2 kainate receptor signalling purely metabotropically and it is common to other, perhaps all, primary mechanosensory endings.


Assuntos
Fosfolipase D , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Hipocampo/metabolismo , Terminações Nervosas/metabolismo , Fosfolipase D/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...